林伟俊,赵辽英,厉小润.基于逐像素递归处理的高光谱实时亚像元目标检测[J].计算机科学,2018,45(6):259-264
基于逐像素递归处理的高光谱实时亚像元目标检测
Real-time Sub-pixel Object Detection for Hyperspectral Image Based on Pixel-by-pixel Processing
投稿时间:2017-04-12  修订日期:2017-09-11
DOI:10.11896/j.issn.1002-137X.2018.06.046
中文关键词:  高光谱图像处理,逐像素排列,亚像元目标检测,实时检测,自适应匹配滤波
英文关键词:Hyperspectral image processing,Pixel-by-pixel processing,Sub-pixel target detection,Causal processing,Adaptive matched filter
基金项目:本文受国家自然科学基金资助
作者单位E-mail
林伟俊 杭州电子科技大学计算机学院 杭州310018 jum05768@foxmail.com 
赵辽英 杭州电子科技大学计算机学院 杭州310018 zhaoly@hdu.edu.cn 
厉小润 浙江大学电气工程学院 杭州310027 605641977@qq.com 
摘要点击次数: 188
全文下载次数: 140
中文摘要:
      亚像元目标检测是高光谱图像应用的关键技术。由于高光谱数据的高维度增加了存储空间和数据处理的复杂度,实时处理成为了目标检测面临的重要问题。自适应匹配滤波算法(AMF)是一种有效的亚像元目标检测算法。在基于Woodbury引理实现以逐像素排列格式传输和存储的高光谱数据协方差矩阵实时求逆的基础上,以AMF为高光谱图像亚像元目标检测算法,推导出了基于逐像素递归处理的高光谱图像实时AMF目标检测流程。通过仿真数据和真实高光谱图像实验证明,相比于非实时AMF,实时AMF只需少量的存储空间便可得到同样甚至更高的检测精度 。
英文摘要:
      Sub-pixel target detection is one of the key technologies in the applications of hyperspectral images.Since the high dimensions of hyperspectral data increase apparently the storage space and complexity of data processing,real-time processing has become a crucial problem for target detection.Adaptive matched filter (AMF) is an effective algorithm for sub-pixel target detection.This paper derived the real-time AMF target detection procedure of hyperspectral images by using AMF as the sub-pixel target detection algorithm,based on the realization of real-time inversing of hyperspectral data’s covariance matrix with the pixel-by-pixel format transmission and storage by using Woodbury lemma.Expe-riments were conducted on synthetic data and real hyperspectral images.The results demonstrate that compared with non-real time AMF,real-time AMF needs less storage space and can achieve the same or slightly better detection accuracy.
查看全文  查看/发表评论  下载PDF阅读器