张小华,黄波.基于Bayes-MeTiS网格划分的3D几何重构[J].计算机科学,2018,45(6):265-269, 295
基于Bayes-MeTiS网格划分的3D几何重构
3D Geometric Reconstruction Based on Bayes-MeTiS Mesh Partition
投稿时间:2017-04-20  修订日期:2017-07-18
DOI:10.11896/j.issn.1002-137X.2018.06.047
中文关键词:  3D模型,几何重构,MeTiS网格划分,贝叶斯,邻居节点
英文关键词:3D model,Geometric reconstruction,MeTiS mesh partition,Bias,Neighbor node
基金项目:本文受四川省教育厅科研项目(17ZB0007)资助
作者单位E-mail
张小华 四川大学计算机学院 成都611844 137136612@qq.com 
黄波 四川大学计算机学院 成都611844  
摘要点击次数: 174
全文下载次数: 130
中文摘要:
      为提升 3D模型几何重构过程的压缩效率,提出一种基于MeTiS网格划分的贝叶斯3D模型几何重构算法。首先,在编码端 采用MeTiS方法 对原始3D网格进行子网划分,采用随机线性矩阵对子网几何形状进行编码,并对边界节点的邻居节点使用伪随机数生成器进行数据序列构建;然后,利用贝叶斯算法进行几何模型重构算法的设计,在理论上给出了均值、方差矩阵以及模型参数学习规则,实现了3D模型的几何重构;最后,将其与图傅里叶光谱压缩(GFT)、最小二乘压缩(LMS)和基于压缩感知的图傅里叶光谱压缩(CSGFT)等算法进行仿真对比。结果表明,所提方法具有较高的比特率压缩指标以及较低的重构误差,计算效率明显提高。
英文摘要:
      In order to improve the compression efficiency of the geometric reconstruction process of 3D model,this paper proposed a bayesian geometric reconstruction algorithm based on MeTiS mesh partition for 3D model.At the encoding part,the MeTiS method is used to realize the subnetting for original 3D grid,the random linear matrix is used to encode the geometry of the subnet,and the pseudo random number generator is used for data sequence construction by considering the neighbor nodes of the boundary nodes.Then,the Bayesian algorithm is used to design the geometric model reconstruction algorithm,and the mean,variance matrix and the model parameters are given in theory to realize the geometric reconstruction of the 3D model.Finally,by comparing with graph Fourier transform spectral compression(GFT),least square compression(LMS) and compressed sensing based graph Fourier transform spectral compression algorithms(CSGFT),the simulation results show that the proposed method has relatively high bit rate compression index and low reconstruction error.
查看全文  查看/发表评论  下载PDF阅读器